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: Pargsité drag, absolute coefficient CD,=%§,
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AERONAUTIC SYMBOLS
‘1. FUNDAMENTAL AND DERIVED UNITS

Metris English
‘Symbol . . ; ] : ‘
. . - { Abbrevia- . Abbrevia- .
Unit - tion 7 Unit tion
Length. .. ] Meter_ oo m foot (or Jmle) ________ | £ (or mi)
Time oo cvae.o t tgeeond. e : 8 | second (or hour)_._.___ gec (or hr)
Force.omewaac F ‘ Welght of 1 kilogram..___| = kg - weight of 1 pound_-__; Ib
PoWer. eci-- P horsepower (metnc) _________ | horsepower-———-—___.| bp
Speed \'a |fkilometers per hour._._.. kph miles per hour_._._____| mph .
peed- - -~ meters per second._ - .- . .mps feet per second ________ fps .

2 GENERAL SYMBOLS

Welght ‘ ‘ v
Standard accelera.tlon of grawty-—Q 80665 m/s? -
~ or 32.1740 ft[sec

Kinematic wscoszty ,
Density (mass per unib volume)

and 760 mm; or.0. 002378 1b -ft* sec?
Specific Welght of “standar ? air, 1.2255 kg/m3 or

Moment of ~ inertia—mk?. ° (Ind.lcate axis of 007651 lb/cu ﬁ"

-radius-of gyration & by proper subscmpt )
Coefﬁment of Wscosmy

3. AERODYNAMIC SYMBOLS R B
Angle of settmg of WlIlgS \relatlve to thrust line)

Ares of wing . S : % Angle of stabﬂLer settmg (relatwe to thrust ‘
Gap o - o - line) :
- Span - T Q@  Resultant moment
Chord L P "~ @ Resultant angular velocity
‘Aspect ratio, - g, : N - i B Reynolds number, p% Wherehs alinear dimen- -

- sion (e.g., for an airfoil of 1.0 £% chord, 100 mph,
] o - standard pressure at 15° C, the corresponding
Dynamlc pressare, 2p v Reynolds number is 935,400; or for an airfoil
Reynolds number is 6,865 000)
a . Angle of attack 7
D, ¢ - Angle of downwash
P ﬁl dra. ab olute coeﬂim onb O - Angle of attack, infinite aspect ratio
Toitie drag, abe O o, Angle of attack, induced

Induced drag, absolute coeﬁiclent Op.— D, e A.nele of attack, absolute (measured from zero- .
¢S litt position)

v  Flight-path angle

Drag, absolute éoeﬁicient OD=§%

tandard density of dry air, 0.12497 kg—m‘ -s’ at 15° c

of 1.0 m chord, 100 mps, the correspondmg, :
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VOLTERRA’S SOLUTION OF THE WAVE EQUATION AS APPLIED TO THREE-DIMENSIONAL
SUPERSONIC AIRFOIL PROBLEMS

By Max. A. HeasLET, HARVARD LoMaX, and ARTHUR L. JONES

SUMMARY

A surface integral is developed which yields solutions of the
linearized partial differential equation for supersonic flow.
These solutions satisfy boundary conditions arising in wing
theory. Particular applications of this general method are
made, using acceleration potentials, to flat surfaces and to
uniformly loaded lifting surfaces. Rectangular and trapezoidal
plan forms are considered along with triangular forms adapt-
able to swept-forward and swept-back wings. The case of the
triangular plan form in sideslip is also included. Emphasis is
placed on the systematic application of the method to the lifting
surfaces considered and on the possibility of further application.

INTRODUCTION

The increased emphasis on extending theoretical knowledge
in supersonic wing analysis has led to a systematic investi-
gation of the various mathematical methods available for
treating the basic differential equations. In the present
report advantage has been taken of the direct analogy which
exists between the linearized partial differential equation
for supersonic flow in three dimensions and the two-dimen-
sional wave equation of mathematical physics. As a result
of this correspondence, solutions which have been given for
the wave equation are shown to be applicable to the type of
boundary condition encountered in wing problems. The
first section of the report is devoted to the development of
the solution for the potential of the supersonic flow field.
The application of this expression to a number of examples
in supersonic lifting-surface theory illustrates the usefulness
of such a method of attack. In the first of these examples
the loadings over the given plan forms are assumed to be
uniform. The results obtained for such cases appear at
first to be somewhat academic since undesirable twist and
camber occur over portions of the resultant surfaces. From
the uniformly loaded surfaces, however, it is possible to
develop surfaces having arbitrary load distributions. Im-
posing the condition that the final lifting surface shall be a
flat plate leads to the solution of an integral equation in
every case considered. The results obtained, for some of
the plan forms considered, have been developed elsewhere
but not always with the unification of method attained here.
New configurations are also included among the examples
given. The methods shown are applicable to a large class of
unsolved problems of immediate interest.
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LIST OF IMPORTANT SYMBOLS

local velocity of sound

B
aspect ratio (§>
0

anan af wing

ppHall UL Wllls

chord of wing
lift coefficient (—L~>
S

load distribution function

constant value of discontinuity in ¢ over uni-
formly loaded lifting surface

incomplete elliptic integral of second kind with
argument % and modulus k&

complete elliptic integrals of second kind with
modulus £ and v1—#%?, respectively

incomplete elliptic integral of first kind with
argument « and modulus k&

functions introduced in equations (89) and (90)

complete elliptic integrals of first kind with
modulus k and +/1—#?, respectively

lift of wing

free-stream Mach number

direction cosines of normals to surface S

static pressure on lower side of lifting surface

static pressure on upper side of lifting surface

point at which value of @ is to be determined

free-stream dynamic pressure <% poV()z)

surface enclosing volume V

area of wing

perturbation velocities in direction of X, Y,
and Z axes, respectively

volume

free-stream velocity

Cartesian coordinates

transformed coordinates (See equation (3).)

Jacobi’s elliptic funections of argument % and
modulus k

angle of attack, radians

Moz— 1
Mach forecone from point P: (X, Y, Z)
semivertex angle of triangular wing



2
Ap pressure differential (p,—p.)
angle measured from X axis

) conical flow coordinate (See equations (27)
and (30).)

7} B tan 6

o(u) Jacobi’s theta function

K cylinder of infinitesimal radius enclosing axis
of forecone T '

A surface at which stream enters induced field of
wing

A angle of sideslip

m Mach angle of the free stream (uzarc sin ]\14_0>

1, Vo, Vs direction cosines of conormal » to surface S

T (u, v) incomplete elliptic integral of third kind with
argument u, parameter v, and modulus k

Py density in the free stream

a, Q variables vepresenting either the acceleration
potential, the velocity potential, or any of
the three perturbation velocity components

T surface on which boundary conditions are given

@ velocity potential

¢ acceleration potential

©Ou value of acceleration potential on upper side
of lifting surface

@1 value of acceleration potential on lower side of
lifting surface

w 1 <

x

THEORY
LINEARIZATION OF DIFFERENTIAL EQUATION FOR COMPRESSIBLE FLOW
The quasi-linear (i. e., linear in the derivates of highest
order) differential equation for the velocity-potential ® in

the case of compressible fluid flow in three dimensions, is
expressible in the form

P2 ® 2 3,2
o (1= 5 o (10 e (1= 5) -

o, &0 .3,
28, Vr—08., *Tr 09, 200 (1)

where a represents the local velocity of sound in the medium
and Cartesian coordinates are used. Under the assump-
tions of small perturbation theory (references 1 and 2).
this equation is modified so that it is linear in form and
consequently more amenable to mathematical analysis.
Denoting by the variable @ either the acceleration potential,
the velocity potential, or any of the three perturbation
velocity components, the linearized expression for equation
(1) is

(1—MP? Qe+, +2..=0 (2

where A, is the Mach number of the free stream and thus
equal to the ratio of free-stream velocity and the correspond-
ing speed of sound.
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By means of tﬁe affine transformation
X=z
Y=z (1—My €)
Z=£(1—Mp)z=

equation (2) can be put into standard forms. Thus, when
My<1 the plus signs are chosen in the radicals of equation (3)
and equation (2) becomes

QXX‘{"QYY"}—Szz'Z:O (4)

while for 3,>1 the minus signs are used and, as a conse-
quence,
Qxx—Qyy—Qzz==0 (5>

For the case of subsonic flow (AM,<(1) the linearized equation
is thereby reduced to the well-known Laplace equation in
three dimensions, Similarly, in supersonic flow (A >1)
equation (2) is again reduced to classical type with the re-
placement of the space coordinate X by a time variable 7'
to give the two-dimensional wave equation of mathematical
physics. The linearization of the general differential equa-
tion for compressible fluid flow therefore makes available, in
both subsonic and supersonic studies, the results of the ex-
tensive work carried out in previous research on problems
related to equations (4) and (5).

APPLICATION OF GREEN’'S THEOREM TO LINEARIZED COMPRESSIBLE
FLOW EQUATION

Methods of solution for partial differential equations of
the type considered here may be classified into two principal
categories: methods which express the solutions in terms of
orthogonal functions and methods which are based on the
use of Green’s theorem. Volterra’s solution, discussions of
which may be found in references 3, 4, and 5, applies the
latter approach to the two-dimensional wave equation and,
as a consequence, his results may be adapted to the study of
supersonic flow and specific solutions of equation (5).

If the functional notation

L(Q) =Qxx—Qpy—Qsz

is used, the analytic form of Green’s theorem for equation (5),
relating a volume integral over the region V to a surface
ictegral over the surface S enclosing V, may be written in
the form

JJJ [aLm)_szL(a)]dV:_J'f (D10 D) dS

where ¢, @ are any two functions which, together with their
first and second derivatives, are finite and single valued
throughout the region considered, and

o0 oQ oQ
Dit=m 5x—m 57 ™3z

where n1, 1y, 13 are direction cosines of inward normals to the
surface S.

The expression for D,Q is, of course, a directional deriva-
tive. The corresponding term appearing in Green'’s theorem
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for Laplace’s differential equation (incompressible fluid flow)
is precisely the directional derivative along the normal to the
surface S. The analogy between tbe two terms prompts the
introduction of the so-called conormal to S with direction
cosines »y, vs, v; defined as

V1= —T"Ny, V2=, V3==N3

The geometrical connection between the normal and the co-
normal is indicated in figure 1; the angles between the lines
and the ¥ and Z axes remain respectively equal, while the
angles between the lines and the X axis are supplementary.

Z
\----Norma/ to
Corormal -1 v surroce §

' \
| \
] ]
' '
' '
. ]

h "

' 1}

i '

' 1

'

' v

~L | : e
'
~_ ! Y P
~ _ "
o /s
\ \
\/( - Surface S
Y
F1GURE 1.—The geometric relations between normal and conormal to surface S.

It follows, in particular, that if the surface S is the X'} plane
the two lines are coincident; if S is a cone with semivertex
angle equal to 45° and axis parallel to the X axis, the co-
normral at any point lies long the surface S.

It is now possible to write

00 00

—Du2=w aX+”2 aY+”3 YA (6)

and the surface-volume relation becomes

fff[az;(sz) —QL(a)]dV:ff[a o -] s @)

If @ and ¢ are chosen so as to satisfy equation (5) through-
out the region V, then equation (7) reduces to the form

f ag—‘;’d3=ffn—ds ()

The form of equation (8) is a direct analogue to results ob-
tainable for functions satisfying Laplace’s equation. (See,
e. g., reference 6, p. 46.) The use of the conormal produces
this symbolic equivalence.

VOLTERRA’S METHOD FOR TWO-DIMENSIONAL WAVE EQUATION

Consider now a surface r which, for the purposes of this
report, may be thought of as being coincident with the XY
plane and parallel to the air flow which is in the direction
of the positive X axis. Two such surfaces are represented
by the darkened areas in figures 2(a) and 2(b). It is desired
to determine the value of 2 at the point P:(X, ¥, Z) from a
knowledge of the boundary conditions given on 7. The
solution to such a problem is immediately suggested by
equation (8) since that equation requires only the knowledge

Q . .
of @ and > along a surface enclosing a given volume, together
v .

with the knowledge of some particular solution ¢ to the wave
equation valid everywhere within the enclosed volume.
Further, it is physically evident that contributions to the
value of € at P can come only from points within the forecone
with vertex at P and also within the envelope of the after-
cones with vertices at the foremost disturbance points of r.
Referring to figure 2(a), this would mean the volume bounded
by the forecone I' and the wedge A springing from the leading
edge of 7; and in figure 2(b), the volume bounded by the
forecone T' and the aftercone N with vertex at the apex of
the surface =. Since for the boundary-value problems in-
volved the surface 7 remains in the X1 plane, equation (8)
must be applied to all three surfaces A, T', and .

PIXY.Z)

T
;o XY Plabe

v

(a)

F1aURE 2.—Mach forecone from point P (X, Y, Z) intersecting surface r.
plan form.

(a) Rectangular

~ XY Plane

FIGURE 2.—Concluded.

(b) Triangular plan form.



Since there is no way of determining @ and g—? along T the

attempted solution will be especially difficult unless the
particular solution ¢ and its derivative with respect to the
conormal vanish everywhere on I'.  But this is in fact the
essential part of Volterra’s method of solution. Thus the
proper choice of ¢ is
' ) X—X;
o=arc cosh o

(This relation, incidentally, is the indefinite integral of the
fundamental solution representing a supersonic source In
three dimensions [(X—X,)?— (Y—Y1)?—(Z—Z,)4""2) The
value of ¢ is equal to zero on the forecone T since the equa-
tion of this cone is

(X—X)*—(Y—-Y)*—(Z—2Z)*=0
and further, since the conormal is always directed along the
forecone, ?T: is the gradient of o along I'" and is also zero.
Equation (8) provides an equality for the distribution of
Q and g—? over \ and 7, provided @ and ¢ satisfy equation (5)

throughout the enclosed volume mentioned. However, al-
though ¢ satisfies equation (5) everywhere in the enclosed
volume opposite 7 from P (under the XY plane in fig. 2),
along the line (Y—Y,)*4(Z—27,)*=0 (above the XY plane
in fig 2) o is infinite and does not satisfy the assumptions
made in establishing Green’s theorem. If this line is ex-
cluded, however, by means of a cylinder x of radius e, with
axis lying along the line (¥—1Y3)?+(Z—2,)?=0, then
equation (8) may be applied to the region outside «x and yet
within the space bounded by A, 7, and I'. In fact equation
(8) can then be written

b oQ
f L+x+x b: >dSZO ©)

where 7 is the portion of  bounding the region of integration.
If R=+/(Y—Y))*+ (Z—Z,)? and cylindrical coordinates ¢, ¥,
and (X—X;) are used, an element of arca on the cylinder « is
dS=— edyd(X—X;), while

O¢_ Oc
v OR™

(X=X
f\/(X X1)2_€

so that

. o aQ Q(X—X)dyd(X— X))
lgIolf f( oy dS= lgaofj e\/(fX—Xl)z—esz-

lim f f ¢ 2% arc cosh (X:Xl> dyd(X—X,) =

«—0

J fmovaxi= [ fiim 3 (i 25

X
z—zwfm ¢, Y, 2)ds (10)

) edyd(X— X))
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If this result is applied to equation (9), one gets

X oo oQ
zwa)Q(;,Y,Z)d;:ffm_x<ﬂa a$>d8 (1)

and, after differentiating equation (11) with respect to X,

20
X, ¥, 2)=5- aXfJ;_H(Qa—J V)dS (12)

PROCEDURE FOR LIFTING SURFACES AND SYMMETRIC WINGS

When the region considered is that bounded by the surface
7, T', and N/, the portion of A on the opposite side of 7 from
the point P, then ¢ is finite throughout the region and, as a
direct consequence of equation (9),

1 0 , Oc o’ :
> 9 NN Rt LD
where 2’ is the value of the potential function on the side of
v opposite P and »’ is in the opposite direction to » on 7.
Adding equations (12) and (13),

X, Y, 2)=5 bAJf o2, a“>ads+

1 0 oo DQ
seox | [0 G astg S [ [ (25— 5 as+
1 92 (o Oo

swox ] S (250 =250 )as

The integrations over r are now in a form which may be
interpreted directly in terms of known conditions over bodies
with given load or symmetrical section. The integration
over » and N\ can be disposed of by discussing the two cases
shown in figure 2. When @ is identified with the velocity
potential, its value can be shown to be zero on X\ and N
regardless of whether the leading edge is swept ahead of or
behind the Mach cone. When £ represents acceleration
potential or any of the perturbation velocity components, a
discontinuity exists in the value of @ for leading edges swept
ahead of the Mach cone as in figure 2 (a). Analysis of this
case, however, reveals that for all wing problems the inte-
gration over A just cancels the integration over N'. When
the leading edge 1s swept behind the Mach cone as in figure
2 (b) the value of Q is again zero. Thus in any case there
results the fundamental equation:

o[ [ (242 cis
2raXff (o— Q)—dS (14)

The counterpart of equation (14) for incompressible fluid flow
is well known. (See, e. g., p. 60 reference 6.)
Under the particular conditions for which

X, Y, Z)::;l

o0 o0’

o o (15)
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over the surface r equation (14) becomes
X, Y, 2)=5- aXff @oPdas e

The restrictions imposed in equation (15) can be given
physical significance after the functions Q, @', and the surface
7 have beeni given specific meanings. Consider first the
case where 7 is a lifting surface. Obviously the normal
induced velocity w is a continuous function across r. If
@ and @’ are velocity potentials associated with the lifting
surface,

’LU(X, Y: Z):’LU’(X, Y: Z)Z%):~%Sz_:

and equation (15) is satisfied. If @ denotes acceleration po-
tential or perturbation velocity u, it is necessary to show that
on the lifting surface

ou_ _ou

o

This relation holds, however, for since w(X,Y,Z2) =w'(X,Y, Z)
along 7, it follows that

w_ ow’
20X X'

and from the condition of irrotationality it is possible to ex-
press the gradient of w in the X direction as the gradient of
4 normal to the surface, that is, in the directions of » and »’.
Equation (16) is thus applicable directly to lifting-surface
theory in conjunction with either velocity or acceleration
potentials. Application can also be made to the determina-
tion of pressure distribution over the surface of a symmetric
airfoil at zero angle of attack. In this so-called nonlifting
case the function @ is set equal to the induced velocity w,
7 is the plane of symmetry of the airfoil, and equation (16)
can be used to establish the boundary conditions, provided
equation (15) is satisfied. For this to be so dw/dv must
equal —dw’/ov’. But conditions of symmetry give w(Z)=
—w’(—Z) from which the equality is seen to hold.

RETRANSFORMATION OF COORDINATES

Since
X—X
VY =Y+ (Z—Z,)*

g=arc cosh

direct substitution into equation (16) yields

UX, Y, Z)=

f Q- X—-X)(Z—2Z,)dX,dY,
20X 2 (Y=Y P+ Z—Z) X=Xy~ —Y ) —(Z—2)

This solution applies to equation (5) and, in order to relate
problems to the linearized equation (2), it is necessary to
use the transformation of equations (3). If the point X,
Y1, Z, transforms to the point z, ¥, 2, it follows that

Qz,y,2) =

ff Q—) (x—xy) (Z—Zl)dedyl
27r o [(y—y0)2+ (z— zozlw/<z—xl)2—/32[(y—yo2+(z—foz]
17)

where
Br=My—

APPLICATIONS

GENERAL REMARKS

Applications in lifting-surface theory may proceed along
two possible lines depending upon the boundary conditions
specified. In what is usually referred to as the direct
problem, or problem of the first kind, the loading is given
over the wing and the potential function of the flow field
field is calculated. From the potential function the shape
of the aerodynamic surface supporting this load can be
found relatively easily. The inverse problem, or problem
of the second kind, concerns itself with the determination of
the loading over a wing surface from a knowledge of the
surface shape. In the following sections both of these cases
will be considered. The direct problem will be discussed
for various plan forms, the analysis proceeding directly from
the expression for the potential function given in equation
(17). The detailed discussion of the direct problem is justi-
fied by its application to the inverse problem where the load-
ing over flat plates with rectangular, trapezoidal, and tri-
angular plan forms is determined. The mathematics of the
inverse problem is less straightforward since the analysis
involves the introduction of elemental lifting surfaces with
constant loading and the solution of an integral equation
for each plan form.

UNIFORMLY LOADED LIFTING SURFACES IN SUPERSONIC FLOW

Infinite span wing.—In order to determine the induced
velocities on the surface of an infinite span, uniformly loaded,
supersonic lifting surface by means of the methods derived
in the preceding section, it is convenient to set @ equal to
the acceleration potential ¢ (reference 2). The lifting surface
is, in this case, a surface of discontinuity for the function ¢
and corresponds to the surface 7, in equation (17). The
discontinuity in the value of ¢ between the upper and lower
surface is equal to

(eu—e) =plo (Pi—p4)

where

»o density in the free stream
p; static pressure on lower surface
p. static pressure on upper surface

It follows that for the uniformly loaded wing in the plane
2z=0 the discontinuity in the acceleration potential is a
constant, say C,. From equation (17)

(x—m) 2z dudy,
o,y 2)= 2r bxff[(y y)2+ 2+ @—) — B (y— ) 2+ 27
(18)
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M,

y
x

F16UrE 3.—Regions of integration for infinite span unswept wing.

A sketch of the airfoil plan form is given in figure 3 and
two possible regions of integration are indicated. In all
cases the integration with respect to y is performed between
the limits at which the radical

Va—2) =B (y—y)*+ 7

vanishes while the integration with respect to 2 depends upon
the manner in which the forccone of the point P intersects
the discontinuity surface. Denoting the chord length of the
airfoil by ¢, the following relations are obtained:

¢=0 when xF 82<0
¢:i% Cy, when 0<rFgBz=<c (19)
=0 when ¢<xF Bz

(When double signs are used, the upper sign refers always
to the case where z>>0 and the lower sign corresponds to
2<0.)

The value of the acceleration potential is thus seen to be
zero at all points in space except for those points lying within
the region between the wedges extending back from the
leading and trailing edges of the airfoil.

It is now possible to determine the induced velocities
associated with the acceleration potential just obtained.
Since, in linear perturbation theory (reference 2),

d¢ ou Op_ 1, OV

_ 1y Ou v Op bw
2= V0387 oy 0or oz V0 o (20)

oz

where %, », w are respectively the x, y, z components of the
perturbation velocities, it follows that

B
U=y ¢

> (1
b:a,yf_m W (e v, 2 @1

o (* 1
?U=aéj_m v, e(r;,y, 2)dx

The induced velocities for the infinite span airfoil result
immediately from equations (19) and (21). If the upper
sign of a double sign is again referred to the z>>0 case, the
results may be written in the form

p=0 for 0=z FBz<c (22)

w=— g VM1

Since the vertical induced velocities are constant, it follows
that the supersonic airfoil of infinite aspect ratio and uni-
form load distribution is a flat plate. The relations between
this loading and angle of attack will be considered later.

Lifting surface with rectangular plan form.—The complete
discussion of the supersonic lifting surface with uniform
loading and rectangular plan form is lengthened considerably
by the fact that in calculating the acceleration potential at
the point P with coordinates z, y, 2z it is necessary to distin-
guish between several regions in space in which the point
may be located. These regions arise from consideration of
the manner in which the forecone of the point P cuts the
surface of discontinuity. The value of ¢ can be found with
approximately equal facility in each of these regions but,
since this paper is concerned primarily with effects on the
surface of the airfoil, the solutions for pertinent regions only
will be given here.

Figure 4 shows the rectangular plan form LL T’ T together
with the coordinate system to be used. The dimensions of
the wing are chosen so that the Mach cones extending back
from the leading edge will not intersect within the boundaries
of the wing. This restriction, which is not nccessary but
merely simplifies the analysis, implies that if b is the span
of the wing and ¢ the chord length, then

tan p=- — - <5z (23)
)

where p=arc sin 1110 is the so-called Mach angle of the

stream and equal to the semivertex angles of the Mach cones.
The loading over the rectangular plan form is to be uniform

. . 1 1
so the expression ¢,— ¢, is set equal to (% for —5 b£y1S§ b

and 0<x;<<¢. The acceleration potential, expressed as a
function of z, ¥, 2, is thus obtainable from equation (17) and
the limits of integration must be determined from the position
of P. From reasons of symiretry, only the portion of space
for which >0 need be considered. Once the acceleration
potential has been calculated, equations (21) may be used
to calculate induced velocities. The results of such calcula-
tions are given and the same convention for double signs is
used.

Region I;: Behind the leading-edge wedge, ahead of the
trailing-edge wedge, and bounded laterally by the y=0
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F1GURE 4.—Lifting surface with Mach cones and coordinate system for rectangular plan form

plane and the Mach cone from the leading-edge tip. The
results in this region correspond to results obtained for the

infinite span airfoil. Thus
1
= :i:’g 00
U= :I: 00/2 VQ
=0
__ G
w=—gy- B (24)

Region I,: Within the Mach cone from the leading-edge
tip, outside the Mach cone from the trailing-edge tip, and
forward of the trailing-edge wedge. Denoting the integrand
in equation (17) by the symbol 7, the expression for ¢, when

1 .
y<zb,is

o, 7, 2) = +217rax< f da, f Tdy+ f da, f Idy1>

(25)
where

Vimy— NG E B Ximr—p (=3 b) +2
Y2=y+% VE—a) =2 Xo=aF pe

Application of equations (21), after integrating either equa-

. . . . 1 .
tion (25) or its companion expression when y>§ b, yields the

(r-51)
N(=DE

results:

(&
$= or

T
:i:§-—arc tan

(]

831184—49——2

(4
U= . Co_ +Z _arc tan 2

el s )
B T =S (DRI

B(y—— b)
N (=Dl

<y 2b> #—p| (y—5b) +2
) e Goge]

As a partial check of the expression for ¢ in equations (26),
it can be seen that in the limit as z approaches zero the value
of ¢ agrees with the result given in equation (24) on the
wing while the value is zero off the wing.

The values of vertical induced velocity in the plane z=0
are of particular interest since from a knowledge of the
distribution of w the surface shape and local angle of attack
corresponding to the imposed load distribution can be
determined. The expressions for w for uniform loading
will be particularly useful later when the load distribution is
modified in order to obtain airfoils with specified induced
velocities. Introducing the notation

1
7 =@:%—b~>—f @7

w=25{’70 BW—}—B arc tan

the following results are obtained for the area covered by
the tip cone:

For 0<{9<1,

—C 1_
Wimo= m}f Wiz — " (28)

and for —1<%<<0, (x<¢)
+f '\/1_711 dﬂl)

After integration of these two expressions, the explicit value
of vertical induced velocity throughout the entire region is
found to be

We=0= 21rV

W,_g= 2205 ——I-\/l 7’ -+ arc sin n) » ”(29)

Equations (28) and (29) indicate that the flow over the
tip portion of the airfoil is of the type referred to as ‘“‘conical
flow.” For this type of flow the values of induced downwash,
aerodynamic loading, etc., are functions merely of the angle 4.
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Busemann (reference 7), Stewart (reference 8), and Lager-
strom (reference 9) have developed analyses for certain plan
forms which are postulated on the existence of this type of
solution. In all cases for which the flow field is conical the
problem is effectively two-dimensional. Such a simplifica-
tion reduces the analysis in this report to a consideration of
a single integral equation while in the references just men-
tioned complex variable theory can be applied directly.

Tip of swept-forward lifting surface.—Consider the tip of
a swept-forward supersonic lifting surface with uniform
loading (fig. 5), the angle & between the leading edge and the
z axis and the angle &, between the trailing edge and the 2
axis both being less than the free-stream Mach angle p.

e

,,‘\‘ 4 W — ¥ \ﬂ'
Region \\'
I R >
L
Leading

tip Mach cone --

-

Region S

— 2 ’~

Trailing
tip Mach cone--

1

x

F1GURE 5.—Tip of swept forward lifting surface with traces of Mach cones, coordinate system,
and regions defined for equations (32) and (34).

In carrying out the integrations it is necessary to distinguish
between the type in which the tip boundarics are behind
the Mach cones and the type in which the tip boundaries are
ahead. The analyses of these two cases are of equivalent
complexity, however, and can be handled with equal facility
by the methods outlined. For all surfaces whose leading
edges form an apex, only the case where the wing boundaries
are behind the Mach cone will be considered. A Cartesian
coordinate system is chosen as shown so that the origin

lies at the apex, the positive z axis extending downstream,
the y axis extending laterally, and the z axis being directed
normal to the plane of the plan form and to the free-stream

direction. The equations of the sides of the lifting surface
are
y=0
bo
=—zx tan dp=—,
y ] ﬁ
and

y=—(x—c) tan 61=—~% (z—¢)

The calculation of ¢(z, ¥, z) again must be divided into
cases depending upon the location of the point P: (z, y, 2).
In the results listed below are included the explicit expressions
for ¢ (r, y, 2); the induced velocities, however, are given
only in the plane z=0, as the integration to obtain a general
expression is difficult. The velocities in the z=0 plane,
which are sufficient for the purpose of this investigation,
can be obtained from a simpler integration since. for the
integral involved,

lim
zeofl(x,y,z)dxz fI(x,y,O)dx

This simplification was used in the analysis of most of the
lifting surfaces investigated. As before, it is assumed that
the discontinuity in ¢ is equal to (. Moreover, the ex-
pressions for w,., are given in terms of the variables 5
and « where

_By —1-C
n="" and o=1—= (30)

In this manner the solution is shown to be conical in the
region ahead of the trailing-tip Mach cone (fig. 5). For
points behind this Mach cone the flow is not conical but a
function of both 5 and w.

Region 7;: Inside the leading-tip Mach cone and ahead of
the trailing-tip Mach cone. Integration of equation (17)
vields the result

290 2

o"_ . xy—{—r g B0
¢:§7%L arc tan N=Siy-r 2)~l—alctan PR (R
(31)

and, after further calculation,

___CiBby f A=
Wymo= 2‘"_V0 1 (771+0) dnl) 1<77<0

_ Coﬁeof"
=2V, m?<m+e>d"“°<’7<1

=aet [T g e cosh
V1—6,? (1-F 6om) .
Y=g arc cos h - 1ot KJ —1<n<{l (32)
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Region 7,: Inside both tip Mach cones. The solution in
this region is simplified through use of the fact that for linear
differential equations any algebraic sum of solutions will be
another solution of the equation. Since the differential
equation for the acceleration potential is linear, this property
can be applied to obtain a solution for the region I, by sub-
tracting from the expressions given for region I; correspond-

ing expressions in which the variable 8, replaces &, and (z—¢)

replaces z. Thus

C, zy+a? %’—62200
=Zf[—arc tan ———x=2 . /WTZ) “+arec tan W—I—
(x—c>y+(x—c>2%—ﬁz?01:|

B +2)
(33)

(x—o)y
z+/(@—c)*—B2(y*+29

—arc tan

arc tan )=

and for —1<y<1

CoB x/l —qp?_ 1 1
Wyng= 27FV0I: axc cosh |77|+
V10 arc cosh (L4 for)
B (00+71) | n

biw-tn

Lifting surface with trapezoidal plan form.—The lincar
property of the differential equation may be used to advan-
tage in determining the flow about a trapezoidal lifting sur-
face with uniform lift distribution, since the boundary
conditions within the plan form of the airfoil are obviously
satisfied when the acceleration potential for a triangular
tip is subtracted from the potential for the rectangular
surface.

Suppose (fig. 6) the angle of rake of the trapezoid is 8, and
that &, is less than the Mach angle u. The acceleration
potential will be identical, over the central portion of the
surface, to that for the lifting surface of infinite aspect ratio.
Over the parts of the surface which are blanketed by the tip
Mach cones the flow will, however, be modified. Becausc
of symmetry the determination of this modification need
only be carried out on one side of the figure.

If the coordinate axes are chosen as shown in figure 6, the
lateral boundary of the lifting surface is

-
_Ne'—n?

+ mc cosh !—|—

/17 —p2
NI=05 . cosh
6

y=—ux tan §p= ——%f

It has been shown that both the rectangular plan form and the
triangular plan form experience conical-type flow over the
region within the tip Mach cones. Thus, the variable 5
defined in equation (30) may be used.

Region I;: Inside the Mach cone originating at the leading-
edge tip, outside the Mach cone from the trailing-edge tip,
forward of the trailing-edge wedge, and to the left of the
y=0 planc.

THREE-DIMENSIONAL SUPERSONIC AIRFOIL PROBLEMS 9

For —1<5<0:

(—W—J Vi—n’ dm)
Wz=0= 2’II'Vo m m—+6

G [__ 1 1 _
=5V, ~+-arc tan w/l 172-|-(9 arc cosh |77|

VI—67 (14-60m)
G are cosh @ +3’)| (35)

M,

|

. AN A g
S N ’ ’ N
,I \\ " :I ’
3
. ~-‘Mach conest.’ .
N e ~
v’ ~ 4 ~

F1¢URE 6.—Trapezoidal lifting surface with traces of Mach cones, coordinate system, and
regions defined for equation (35).

Swept-back lifting surface.—As another example of the
way in which the lincarity of the differential equation may be
utilized to obtain further solutions, the induced vertical
velocities for a swept-back wing will be determined for the
case in which the leading and trailing edges lie behind their
vespeetive Mach cones (fig. 7). The boundaries of the plan
form are given by the equations

_ % b6
Yy 8 &y Yy B T

0 O
y= 6 (Z C); Yy B (1' C)

The flow will be conical ahead of the trailing-edge Mach
cone where the induced velocities can be expressed in terms
of the variable n. Behind the trailing-edge Mach cone the

flow will not be conical but will be expressible in terms of the
e

variables 4 and wzl—g—v.

Consider first the region of conical flow. In order to
determine w,-, for a given value of 7 it is possible to con-
sider separately the induced effects produced by each half of
the surface. But in the region ahead of the trailing-edge
Mach cone, the induced velocities arising from one half of
the surface are given by the formula for a similar region on
the swept-forward surface. For reasons of symmetry the
results for the entire swept-back lifting surface need only be
given for values of 5 within the limits — 1<5<C0.
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FIGURE 7.—Swept-back lifting surface with traces of Mach cones, coordinate system, and
regions defined for equations (36) and (37).

In the region where the flow is not conical the solution will
be built up of a combination of solutions obtained from the
regions of conical flow.

Region I;: Inside the leading-edge Mach cone, outside the
trailing-edge Mach cone, and to the left of the y=0 plane.

For —1< <0

Bcooof ‘/1_771 2
Wemo= 27V, R d771

(36)

*OOBI: 2 VI—6; (2—0"—n")
=5V, o arc cosh » |-I- % arc cosh |(9 7 2)|

Region I;: Inside both Mach cones and to the left of the
y=0 plane. The solution in this region can be produced by
subtracting from the value of w.-, given for region I, the
value of w,.o given for the same region except that in the
latter case §, is replaced by é; and z by (z—¢). Thus,

. ) 1__92 -—0 -
.- s 220‘60 [?_ arc cosh 7)1+ '\/—BO_O-&I'C cosh (I(g 0 2;]])
2
02 arc cosh :l \/10 are cosh (2 01 )w
A 1

Although the uniformly loaded lifting surface was the only
prescribed loading analyzed, it should be noted that the
basic integration leading to a solution of this type of prob-
lem (equation (17)) is in no way restricted to a uniform load.
Arbitrary loadings that may or may not be analytic functions
of z and y can be specified and the problem therefore becomes

one of technique in integration. The solutions for the uni-
formly loaded surfaces, however, are particularly useful. By
methods of superposition these solutions can be used to ob-
tain the surface loading for specified plan forms (the inverse
problem) as will be illustrated in the following section.

LOAD DISTRIBUTIONS ON FLAT-PLATE LIFTING SURFACES IN SUPERSONIC
FLOW

Infinite span wing.—Since the vertical induced velocity is
constant for the supersonic airfoil of infinite aspect ratio
(equation (22)) and uniform load, it follows that the airfoil
is a flat plate. This property distinguishes the infinite aspect
ratio problem from all other plan forms considered, for the
load distribution must be modified in the latter cases so that
twist and camber are removed from the wing to obtain a flat
plate.

Denoting the angle of attack of the airfoil by «,

a=—w§° V2¢M0—1 (38)

Moreover,
P1—Pu=po(eu— 1) =poCo
and, setting

1t follows that
e (39)

Eliminating Cy between equations (38) and (39),

Ap 4o
v £ (40)

The result given in equation (40) is the well-known Ackeret
expression developed in reference 10. The derivation here
follows the approach of Prandtl (reference 2).

Rectangular plan form.—Since the vertical induced velocity
for the uniformly loaded supersonic airfoil of rectangular
plan form is not constant over the portion of the wing
covered by the tip Mach cones, it is necessary to modify the
load distribution within this region in order to get a flat plate.
The determination of the required load distribution will be
shown to depend on the solution of an integral equation and
subsequent problems dealing with other plan forms will,
from a mathematical standpoint, be similar in form.

The rectangular plan form will be thought of as being built
of superimposed trapezoidal lifting surfaces with variable
angles of rake (fig. 8), each trapezoidal surface having a uni-
form load distribution but with loading allowed to vary with
the variable rake angle 5.

Since the flow over the part of the airfoil within the Mach
cone is conical, it is possible to express w,., as a function of
n where

By
K
Setting
B tan 6=40
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and using equation (35)

2 Vow(m)emo__ (%" e "_\/1_—“‘71_2_@_3_
B ’ﬁﬂo@(” le mts) 40 (4D

where C'(8)=y¢,—¢; for the single trapezoidal surface with
rake angle .

\J

x

FI1GURE 8.—Rectangular plan form built of superimposed trapezoidal lifting surfaces with
variable rake.

The solution of the problem depends on the determination
of a function €’ (8) which, when substituted in equation (41),
will yield a constant value of w._¢(5); that is, a value of w.-g
independent of the variable . Imposing the condition that

dwz:ﬂ__
“dy 0

the problem is resolved into one of solving the equation

_2 (" f " NIz’ dn
L e
By means of the notation

K 1/1_7712 dnm
f—l m m+0_Gl(n’6)

the integral equation is written in the form

[ (" 4 g
o=tim [ (" coGanint 4 [ 0@6a0n]

0

where the singularity in the integrand necessitates the use
of the infinitesimal e. The evaluation of the derivative
thus leads to the expression

0

0'(*71—6)671(?7,—77—6)+0’(—7,+5)G1(,7,_.,,+6):|

—1 17 gy Q0 f‘ v (201 1o
0 lmI:J; coSrat [ oS

g=-m, ]

- Th

FIGURE 9.—Region of integration showing line of singularity for equation (44).

It can be shown from equation (35) that, if C’(f) is a con-
tinuous function,

lim —ox—n—aawrw—a+0%—n+aawrm+a]=o

Hence
_1/1—1;121‘1 C’(0)do
0= M o m+0 (42)
and the solution of this equation is
’ . 01 .
CO= 55 (43)

where () is a constant to be determined later. Substituting
from equation (43) into equation (41)

eVl (el (o (0 Vay,
BC 0 v0(1—0) 0 v0(1—8)J-1m(n+06)

(44)

The region of integration in the ¢ plane for the double
integral of equation (44) is shown as the cross-hatched area
of figurc 9, a singularity in the integrand occurring along the
line §=—n,. Rewriting the equation and reversing the
order of integration in the double integral,

20 Vi (n)smo _

e FU 2
80, — 27 arc sin\/o] —lim |’ ilT"—‘dm

0 304 -1

do

. et o s
o (m+0)VOA—8)  J-rte (m+6)VO(1—0)

The bracketed expression in this equation can be shown to
vanish for all values of 7 between zero and —1 so that,

finally,
—¢ R R,
W,_g= 27rT}0ﬁ 2¢ arc sin \/e:lo = 21/1’51 (45)

Since the trapezoidal lifting surfaces are superimposed,
the loading C(6) over the resultant rectangular plan form
satisfies the relation

ac) __

a5 0=

G
V6(1—9)
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Imposing the condition that C()=0 at 6=0, it follows that
0(6) =2C, arc sin /6 (46)

This equation gives the incremental change of acceleration
potential between the upper and lower lifting surface of the
rectangular wing. As a result the increment in pressure is
0 =2p,C; arc sin 6

Pi—Pu=polpu—

Expressing the pressure difference in nondimensional terms,

Ap_ 40,
q Ve

Pi—Pu__

arc sin /8 (47)
: poVo?
2 0

The constant (; may be eliminated between equations (45)
and (47) and as a consequence

Ap_ _ W.p 8
q Vo AB

Since the angle of attack « of the airfoil is by definition

arc sin 6

=9, the final expression for the loading, in coeffi-
]

cient form, over the outer portions of the rectangular wing is

equal to —¥

Ap S8a /
28 VT arc sin +'9 48
J r\/Mo v (48)

The general approach used to obtain this result is similar to
that used by Schlichting (reference 11). The crror in
Schlichting’s final result has been noted by Busemann and
others.

Lift coefficient (%, for an arbitrary wing is defined by the

relation
_L_1((4p
OL—SO(Z_SO ff q s (49)
where

L=total lift of the wing
dS=-element of area on the wing
Sy=total area of wing

For the rectangular wing the values of Ap/g over the tip
and center sections are given by equations (48) and (40).
As a result of this integration

=5 (1=251) (50)

where A is the aspect ratio and by definition equal to the
ratio of the square of the span and the wing arca. As a
final conclusion the lift-curve slope of the wing is

%? 5<L_%A> (51)

Trapezoidal plan form.—The results given in equations
(48) and (51) are capablc of generalization to the case of the
flat plate having trapezoidal plan form and with rake angle
5 less than the Mach angle of the stream. For such a
configuration the airfoil is again blanketed in part by the
tip Mach cones and the loading in this outer section of the

airfoil must be adjusted properly to give constant induced
vertical velocity. Superposition of trapezoidal lifting sur-
faces with loadings varying with rake angle & can again be
used and the conical nature of the flow employed. Setting

n=8y/z
#=p tan §
f,=p4 tan &

equation (35) leads to the expression

Vb [ oty (e [ 22 )
0=0 — 1 1
(52)

where C’(0)=w,— ¢, for the single trapezoidal surface with
rake angle 6.

The analysis in this case follows along lines directly analo-
gous to that used for the rectangular surface. For the
present configuration the loading function for the superim-
posed trapezoids is given by the relation

’ . OIA:_
CO=Twi—o )

and the integration to obtain w,—, can be simplified to
give, as a final result,

BO} fl 7l‘d0
[

2 Vs T3y, 88

Wemo =  N0—6) 1—8)  2Vs

The loading C(8) over the resultant trapezoidal plan form
can be found from the relation

o) 53

40 NGt =0

From the boundary condition that C(0)=0 at 0=6, it
follows that

C(8) =20, arc sin Ll
16,
and
- —401 arc sin \/2_—09 (55)
p V V() 1_00
'2— oVo

Elimination of € between equations (54) and (55) and
introduction of angle of attack a« for —w,—o/Vo gives as
acrodynamic loading over the portion of the airfoil within
the tip Mach cones the expression

Ap 8(1 . 9_00
2 2% gr¢ <6,<
¢ 8 arc sin \/1_00; 0<6,<1 (56)

Figure 10 indicates the variation of the loading over the tip
scction of the trapezoid. The wvariable (B/a)(Ap/g) is
plotted against 8 tan § for 8 tan g equal to 0, 0.3, and 0.6.
The curve for B tan §,=0 conesponds to the case of the
rectangular wing and shows results in agreement with equa-
tion (48).
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Fiaure 10.—Load distribution over tip for various trapedzoidal plan forms.

By mecans of equation (49) together with equations (66)
and (40) the lift coefficient of the trapezoidal wing is expres-
sible in the form

C C
1—., tan §;— _, tan
4 2b 0" 2p #
Cr="3 (57)

—g tan §,

Introducing the aspect ratio 4 of the wing where

B
c (1 —g tan 60>
one gets for lift coefficient the relation

C.= 1+ a (1 ﬂb)_l (58)

From equation (57),

A=

¢ ¢
do, fL 1—?b tan 80_273 tan p 59
do B 1 —g tan &,

In figure 11,8 % is plotted as a function of AB for §,=0, %;

and 1. The curve for 6,=0 agrees with results given by
equation (51) for the rectangular wing. All curves are

lMo

5
B ton Sg=/-..
4 3
S
-1
a
3
]
[k
i
X
2
/
o 2 4 6 8 G
BA
Fravre 11, Variation of reduced lift-curve slope g8 ‘—i(-l(—:;" with reduced aspeet ratio gA for

various trapezoidal plan forms.

terminated at values of AB for which the tip Mach cones
intersect on the trailing edge of the wing.

Triangular plan form, type 1.—The.pressure distribution
over triangular lifting surfaces with constant induced vertical
velocities will be developed in the following three sections.
These plan forms are indicated in figures 12(a), 12(b), and
12(c) and shall be denoted, respectively, as types 1, 2, and 3.
Types 1 and 2 are actually special cases of type 3; namely,
the cases where one leading cdge is parallel to the free stream,
and where both leading edges make equal angles with the
stream direction. Type 3 includes any plan form which has
leading edges swept behind the Mach cone but on opposite
sides of an axis drawn through the vertex of the triangle
and parallel to the frec stream; and, further, has a trailing
edge such that the Mach cones from either tip do not cross
the surface of the wing. The principal reason for considering
the three types separately is to show the manner in which
the spanwise loading appears in the solution of the problem.
In types 1 and 2 the proper load distribution is found readily
while the final type requires a more careful treatment.

In order to determine the load distribution over the airfoil
it will be convenient to use a differential element over which
the loading is uniform. The elements may then be summed
and the distribution of loading adjusted so that the induced
vertical velocity at any point on the total lifting surface is
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FIiGURE 12.—Triangular flat plate lifting surfaces. (¢) Type 1. (b)) Type 2. (¢) Type 3.

constant. For the triangular plan forms it is possible to
assume that conical flow exists and the analysis may be
carried out using the angular coordinates that have already
been introduced.

Figure 13 shows the elemental lifting surface to be used.
The sides of the element extend back from the tip of the
Mach cone; making angles § and §+4A5 with the positive
x axis or free-stream direction. Corresponding to previous
notation, the relations 6=p3 tan 8 and 6--A9=0 tan (6-Ad)
are used. The vertical velocity induced by the element of
surface may be denoted by Aw and it follows that

Aw=w(8+ A8, 7) —w (8, n)

My
i
-
-
- \~ y
N
1” \\
f/ \\
t’ \\
/’ ~
d \\-
’, \\\
. RS .
. 6 .
. N
/,’ ~\
- S +AS
e ~
4 ~
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F1aURE 13. —Elemental lifting surface of constant load.

where w(8,7) and w(0- A8, 4) are the velocities induced by the
triangular-tip surfaces with uniform loading and with tip
angles equal to 6 and 6&-+As, respectively. Applying a
limiting process,
o Aw . w(0+A8, ) —w(d, ) Ow
Im Se—am I, =20

(60)

It follows that w,., for the resultant lifting surface will be
evaluated by an integration with respect to 8. If dw,_,/08
can be expressed in the form of an integral with respect to
7, the relation for w,., will then be similar to those given
in equations (41) and (52) for the previous plan forms and
the expectation will be that the function €(8) can be deter-
mined to give constant induced vertical velocity.

The method of attack just outlined is postulated on the
existence of an integral expression for dw,-,/08. Such an
expression is, however, obtainable directly from the integrals
in equation (32). Integrating these relations by parts
after first differentiating by 6, leads one to the formulas:

For —1<%<0

QW,_g__ BCo \/1————772 f” dm '*v*:l
36 20 VoL F0) T )y it o) y1—n| OD

and for 0<n<1

awz=0: 80, \/1-—4"72
00 2x Vol n(nt6)

+fn"<nTZ7;WT——T] (62)

If the elements are summed over the type 1 friangular
wing, induced vertical velocity is

__B__ o ‘/1_——,7_2 n d771
w(ﬂ)z=0_2ﬂ.VOﬁ c®) 7(n+86) +f_1 012 (n14-0) VI —n,® @8

(63)

]
where C(6)=¢,—¢,; for the element at d=arc tan g If
W=y 18 constant, then

a'wz:{)

oy 0

and from this criterion the function C(6) will be determined.



VOLTERRA’S SOLUTION OF WAVE EQUATION AS APPLIED TO THREE-DIMENSIONAL SUPERSONIC AIRFOIL PI\C,OBLEMS 15

Thus, using methods similar to those introduced in the
development of equation (42),

b \/1—1; LN e()] 1 & C0)do
f 74 0d0+n2\/1— 2Jo n+6
b 0(0)d0
an 0 (64)

The general solution of this equation is

Ci6+4-C,

O

where C) and C: are constants. Since, however, the Kutta-
Joukowski condition requires that loading vanish along the
edge 6=0, it follows that C,=0 and the required loading

takes the form
0
cm=0y/z1s

If equation (65) is substituted into equation (63), vertical
induced velocity can be calculated from the expression

(65)

20 Viwseo_~T—7 odo
BC 1 (7I+0)w9(90-9)
n  4de 0 dn, )
: 66
JO VOBo—6) J-1 n2(n+0) VI—n (66)

The region of integration in the », ¢ plane for the double
integral of equation (66) is shown in figure 14 for the case in
which —6,<(9<(0. A singularity in the integrand of the
double integral exists along the line 6+47,=0. Reversing
the order of integration, equation (66) may be rewritten as

27 Viow,. 0 2 9“#»_'_ fge _____f_o" d‘r]l
TBCG N T e (64 VEG—6)

-1 mV1—n’

feo ds _ J dn fﬂo s
o (0+m1) \/0(00—9) —30"71\/1“‘7712 0 (0+711)V0(90—9>
(67)

The single integral in equation (67) has a singularity at
6= —n since —0,<9<0 and 5 therefore lies inside the region

-7 hd/ /]

FIGURE 14.—Region of integration showing line of singularity for equations (66) and (78).

of integration. A corresponding singularity occurs in the
second of the double integrals at §=—u,. Consider, there-
fore, the integral

t de L —n—e de
ﬁ (0+n)ve<oo—o>_{15?[ﬁ (e+nweo—o +

]
68
J—n+€ (0-1-71)1/0(00 ] 68)
The indefinite integral is
1 In _ﬂ90+990+2779“‘2\/(—7790—772)9(00_0)
v —nbo—n* 0+n
so that the definite integral is
N 8o
lel—I>T01 '\/—7)00"“7]2 { _90+

L= 2n00— €0 —21°— 2en— 2(—nf—
[ 2’)00+€90—2"72+2€") 2\/( 1700

1) (—n—ebotntd] e ;
o— 1) (—n+e)(Bo+n—e] (—e)

The value of this expression is 0 and equation (67) therefore
becomes

271' Vow 2=0__

BC, (69)

_j‘”"_ dm [f’ oo
Lm \'/1_7712- o (0+m) w/0(90~—0)
Since, in this region of integration, —1<(n<(—#, it follows
that

f@c —_L_—
o (O+n)V0(6—6)

1 ¢ —n100+4- 00,4 2,0 "I .
N ’ al'c al e e - —_= T = - =
\’77190”’r’U12 ' l2\/(7’1124‘771190)9(‘90—‘9) 0 \’n(ﬁo—l-n)
and
601f d771
W,o=c . (70)
T2V m 1—m2 Vi (4 65)

The integral of equation (70) can be transformed by means
of purely algebraic substitutions into a form that integrates
immediately into complete elliptic integrals of the first and
second kind. However, in the consideration of the type 3
plan form it will be necessary to resort to other methods of
transformation, so that a more uniform approach, employing
Jacobian elliptic functions, will be used throughout. (See
reference 12.)

The quartic under the radical in equation (70) is first re-
duced to an expression of the type appearing in elliptic in-
tegrals of canonical form. This is accomplished by succes-
sive application of the transformations

k41 k
n=— 1—:_: and §=7

where k and [ are chosen so as to destroy the odd powers of
the variable. By means of these transformations, induced
velocity becomes
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+ I —i—(lc—k)t 1]dt e

w BC s Y
T2V, VEG— R A—k) ) (1—k) Y1 —8) eiE—1)
where J

11— /1—62

k—T

The integration of equation (71) will be performed after
first considering two parts such that w,.,=w, +w, where

w_EQ__. (1—k2) k2 (k ]L> tdt -
T2V VEG—B) 1—k) ) (1—Ic2t2 VA& Er=1)

and

(1—t Ydt

BC,  (1—k)k? : _
&2 (k% —1)

Wy= — 577

2Vo VE@y—k) (1—k%) ), (1—k22) /(1 —¢

This separation is prompted by the fact that the integral for
w, is expressible in terms of elementary functions after the
simple transformation ##=2. The results of such an integra-
tion lead to a value that is zero at the lower limit and infinite
at the upper limit. However, an inspection of the original
integral in equation (70) shows that w,_, is finite so the
infinity obtained for w, must be canceled by a corresponding
infinity of equal magnitude in w,. The actual proof of this
statement necessitates, of course, treating the combined
expressions as an indeterminate form where the upper limits

1
of the integrals for w; and w, are replaced by —]E—}— e and the

limit is taken as e approaches zero.
Introduce now in the integration of w, Jacobian elliptic
functions and set

t=sn(u, k) =snu

so that
di=cnu dnu du

The expression for w. becomes

e 601 (1_k2)k2' K+HE' ppo i
* 2V VEG—k) (1—F) dn’u

where K and K’ are the complete elliptic integrals of the

first kind with respective moduli & and ;'=+/1—£k% Inte-

grating and combining with w,, one has

wz=0:wl+
B0, (1—k)kx { I: o SRUCTY :] }I‘HK’
2Vo VE(Bo—k) 1—ks) LB +E dnu @) K

where E(u) is the incomplete elliptic integral of the second
kind. After substitution of the limits, induced vertical
velocity is

BC: (1—EHE'

2V VEGo—F) (1—F) 72)

Wep= —

where E’ is the complete elliptic integral of the second kind
with modulus k’=+1—k2. Equation (72) can be further
simplified by writing % in terms of 6, so that

BC, 20+ +1—6) .,

We0=—3y, \/———*— E (73)
/

where the modulus of E’ is 4Y1—%2 and k— 0 —6

For the loading in question

(4
pl_pu:p0(¢1z_§al):p001 R
G,—0

ap_20, [H-
q Ve Op—8

By means of equation (73) the constant C; may be eliminated
and

and

Pi—DPu__
1
5 P Ve

1201 — /1— 6,9
TBEN T a8 74)

rfo

6 ; 5
IR
&
Qy : / /
.3 & “t-8 tan 6,=9
5 /
/ Z//
7
Z
0 .2 4 .6 8 10

B tan 6

FIGURE 15.—Load distribution over triangular plan forms of type 1.
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Figure 15 shows the variation of g éql’ with 8 tan & for values

of 8 tan & equal to 0.3, 0.6, and 0.9.

From equations (74) and (49) the lift coefficient of the right
triangle wing with trailing edge normal to the free-stream
direction can be determined. It follows that

=2 (— V1= (75)

Since the aspect ratio A4 is given by the equation A=26,/8,
equation (75) can be used to find the lift-curve slope as a

function of A. In figure 16 a plot of 8 aé—gé as a function of

BA is given.
M,
3
/
Gl -
=3 S — - */ -
Q

o A .8 L2 1.6 20
FI16URE 16.—Variation of reduced lift-curve slope 8 ‘"id% with reduced aspect ratio 8.4 for

plan forms of type 1.

Triangular plan form, type 2.— Figure 12(b) shows the
symmetrical type of triangular plan form considered in this
section. The semivertex angle is &, and 6, is defined by the
relation

Go=p tan &,

The loading element used in the previous section can be used
again and equations (61) and (62) are applicable directly.
Because of the symmetry of the figure, it is necessary merely
to insure the constancy of w,-, over the left half of the wing
in order that the entire wing be a flat plate.

Summing the elements over the type 2 triangular wing,
induced vertical velocity over the portion of the wing for
which —1<»<0 is

I, dny
W) =o= 27rVof [n<n+0) e ]0(0)‘”

or, since C(8)=C(—90),
d
’w<77)z=0'— 7|'V0f '\/1 — f o

0
92—"1 1 18— 1/1 M ]O( )do
(76)
The function C(6) in equation (76) must give a constant
value for w(n)..o so that dw,_,/dn will vanish. Imposing

this condition it can be shown that a solution is given by
the relation

(&)

0) =——=2— 77
0O =5 )
and, after substitution in equation (76),
WVo’wz o__ __ % \/’itﬂ_ —
BC o (02—n2) \6,—6°

fo d0 n d7]1

[REAE S Wewe e B

The integration of equation (78) is to be performed under

the assumption that —6,<»<{0 so that the region of

integration in the 5,6 plane for the double integral is as

shown in figure 14. Reversing the order of integration in

the double integral, equation (78) may be written in the
form

'H'T wzo

8C,
g d9

0 (92—?72) VB —6*
f“’“ﬁ_ﬂL_ f"“ __ 46
-1y 1T—m?Jo (0*—m?) \/90_2102
7 dm fou do
— e - = Sy TT s 79
f—f’o 711\/1—7712 0 (92—7712) \/902—92 (79)
Evaluation of integrals of the form
I ) db
B _ﬁ) (") V6, — 6
is accomplished by means of the substitution
0

After substitution, the integral becomes

0°f <——x>\/1

and, by straightforward integration,

0 f01—<1
I=

. f 772 1
2")\/712—902 ot 902>
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This result shows that the second double integral of equation
(79) vanishes (since 62>>7,%) as does also the single integral
in the equation. For the remaining double integral, however,
8°<m® and

_8G f“’" _dn
. w2=0_2V0 ~1 77121/1_7712\/"112—902 (80)
Setting
gt
Uit

equation (71) transforms to

_ BG 7 2’dz
wg:O___Q_Vo 1 V(Z—1)(1—65°2?)

Introducing the modulus k=06, and making the substitution

z=sn(u, k)=snu
one gets the expression

snfudu

_7'601 K+iK’'

)

_ B0

T 2Vok?

__ 86
2Vok*

[u—E@)] 5
El

where the prime again refers to the complementary modulus
k’=+/1—k? of the complete elliptic integral. Since k=6,
— BOI ’
W= 2V0002 E (81)
where &' =+/1—6,2
For the loading in question

P1r—Pu_AP__ 20,

so that, eliminating C; between this equation and equation
(81),

Ap__ 4&002
O = E (82)

. . A .
Figure 17 shows the variation of g ?p with B tan é for values

of B tan & equal to 0.3, 0.6, and 0.9.

From equations (82) and (49) it is possible to find the
expression for lift coefficient of a triangular or delta wing.
Thus:

0L=2ﬁ%€"g (83)

Since aspect ratio of the wing is

_40
B
lift coefficient becomes
0L=1raA

SE" (84)

U,

3o
Uy \

A
7
\

2 .6
.3
/
=8 =4 12 4 .8
A fon &
Fiaurg 17.—Load distribution over triangular plan forms of type 2.

where the modulus of £’ is k/=4/1- 16 This result

agrees with that obtained in another manner by Stewart
(reference 8). In figure 18 a plot is given of B%} as a

funection of gA.

Triangular plan form, type 3.—Figure 12 (c¢) shows the
plan form now to be considered. Relative to the z axis or
free-stream direction the sides of the triangle form the angles
8 and 6; so that the total vertex angle is 6,48,=2A. The
variables 6, and 6, are also introduced satisfying the relations
0,=p tan &, 6;=0 tan 6;. The same loading element that
was used for type 1 and type 2 triangles may be used and
equations (61) and (62) apply. It will then be necessary to
determine the distribution of load so that the induced vertical
velocity over the plan form is a constant. Since this induced
velocity must be the same on both sides of the §=0 axis.
two equations result:

For —1<5<0

- e SV ST dn,
W(n\ z=0 2‘"_"[/0\[_'9l W—) +f_14 7]12(7’1_[_0) ‘\/1 _1712] 0(0)d0
(85)
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FIGURE 1R, —Variation of reduced lift-curve slope 8 - dox with reduced agpeet ratio g for

plan forms of type 2,

and for 0<{n<1

V1 ——17 d771
W(n) = 27"V0f—01 I:‘U ('ﬂ+0) J; ﬂ12(771+0) \/1 '—771 :I 0(0)(10
(86)

From the solutions to the problems of type 1 and type 2 it is
possible to construct a solution of the more general problem
by expressing the loading function in the form

A9+B
v (6:46) (6,—6)

)= (87)

where A and B are constants that can be determined in terms
of w.=, from equations (85) and (86). KEquation (87), in
conjunction with equations (85) and (86), yields the cxpres-
sions

Wimo— sl LAH: 6o, 6+ BHa (60, 6)]

wWev=gtr [—AH,(0:, 60) + BE (6, 00)] (88)
1]
where
61 d')h
H, (6, 6)) = f 89
161, 60) 1 my (—m®) (n—61) (m—+60) ®9
d’?l

0, 00= " 90)

"112\/(1 _7112) ("71 —6) ("71‘|‘ 90)

The evaluation of H,(6;, 6,) and H,(6;, 6y) is accomplished
in the same manner as has been used previously: first, a
reduction of the quartic under the radical to canonical form
and second, transformation by means of Jacobian elliptic
functions followed by direct integration. Since the cacu-
lations for both equations are quite similar, only in the case
of H,(6,, 6;) will the details be mentioned.

By means of the transformations 5, = T_i_l—s and s—-? where
1=, — V(1 —6) (1—06.) 01
a b0+6: ®1)
b 106+ V(1 —6°) (1—6,%) (92)
6o+ 6

The introduction of the symbols R and & defined as

b—a
B= 0= 6—a) 6. 10) (93)
1—_006
b= T (94)
equation (89) reduces to
. [2+t(a—b)—1]dt
Hi= ka (1—a?®) =1 (1 —k%) (95)

The integrand divides naturally into two parts, one containing
even powers and one containing odd powers of ¢ in the nu-
merator. The latter part integratesinto clementary functions
after substituting ¢=wu? and cquation (95) thereby becomes

=wis] @

1

b2—1 k (*—1)dt
2V k2—a? "'f 1—a*)JE—1) (01—

Hi—a Rlcl:
Setting

 (#*—1)dt
fl (1—a) Y@ —1)1—F%)

and substituting
r=sn(u, k) =snu

K4iK sn*u
zf I:l+ (a®—1) - angu]

If sn 7=%; I, now may be written as

one gets

Le—K'— dny f KR k2snyenydnysniu
L lczsn'ycn'y 1—k2sn®ysn’u
or
’ N bz‘_ 1 K4+iK’
L=—K'—i4 ) e [0, M 97

where TI(u,y) is the fundamental elliptic integral of the
third kind.
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The evaluation of II(u, k) is best achieved by means of its
expression in terms of theta functions and zeta functions.

Thus

I (u,y) =% log ggz;z; +uZ(vy)

and the bracketed term in equation (88) is

O(K+iK'—7)O(Kty)
EO(K—v)0(KiK +v)

1K' Z(vy)

I(E+IK', ) —T(K,7) =5 lo

The theta functions are quasi-periodic, that is, they satisfy
the relations

0(u+2K)=06()
K(K - o )
From this property, together with the fact that ©(u) is an
even function, it follows that

o(ut-21K")=

O(K+iK'—y)oE+y) _ 7
0(K—)6(K+iK'+7)

Moreover, since

Z6)=E) — 5

there results
N err) . K'E . =%y
N(K+iK',v)—T(K,v) =1K'E(y) —uy T—}‘% oK
and

L= K+ i G K [E— £} 09

The expression for equation (96) can now be written
b —1 2
H,—aRk a1+ & I:E—y) — }—aRkK
(99)

where the moduli are k for the nonprimed functions and
k'=+/1—F? for the primed functions. By definition, y=arc

s ng (%7 k> where F is the incomplete elliptic integral of

the first kind with argument - A ¢ and modulus k.

In the same notation, the equation for H, is as follows:

Hy=pias | z(l—kz)K’—(1—a2)E’—a(1—k2)\/?;322;:11—l:K’
E(y)—~ ETI{(—Jrg (%—1)] } (100)

Formulas (99) and (100) can now be combined with equa-
tions (79) to give

(101)

and

cefrmmnad

|

()
\'\'
\

2
\\
0 | 1
\\\ A
! \
(a)
¢ -8 =4 o 4 .8
B tan 6
FicUre 19, -Load distribution over triangular plan forms of type 3. (e) 8 tan &=0.3.
__ Vaweo \/:2?_'
B=—"55" 2005 1 (102)
where
1460, — v (1 —6,) (1—6.%)
= 103
¢ 00 0; (103)
and E’ is the complete elliptic integral of the second kind
with modulus +/1— G~
From equations (87), (101), and (102)
Pi—Pu _AP_ 20(0) _A(H—_Bf ‘
%POVO g Vi Ve (6,46) (6,—0)

2a “2G [ (B,—6:) 8+ 2600,
=BE’ \/eo—+ei NOED) (eo—o)] (104)

It should be remarked that the slope of the loading curve

is zero at §=0. Figures 19 (a), 19 (b), and 19 (c¢) show the

variation of = sa zq P with 8 tan & for values of 8 tan &; equal to

0.3, 0.6, and 0.9, respectively, and for 8 tan & equal to 0,
0.3, 0.6, and 0.9.



IR v e
Qéjrwn 20N
i

VOLTERRA'S SOLUTION OF WAVE EQUATION AS APPLIED TO THREE-DIMENSIONAL SUPERSONIC AIRFOIL PROBLEMS 21

o

Qv

\“_/

O
N[
\\

AN

(b)

=& —< a -4 8
B tan 6

FIGURE 19.—Continued. (b) 8 tan §;=0.6.

From equations (49) and (104) the lift coefficient for a
type 3 plan form is obtainable. Two cases will be developed
here: first, when the trailing edge of the wing is perpendicular
to the stream direction; second, when the trailing edge of
the wing is perpendicular to the line of symmetry. The
first configuration may be referred to as a skewed wing while
the second configuration may be referred to as a symmetrical
delta wing at an angle of sideslip. Thus for a skewed wing

Co=trg \/(oo+el)2a (105)
where ( is given by equation (103) and £’ has the modulus
v1—G*®.  This result agrees with that given by R. C.
Roberts in an abstract in reference 13.

For the more practical case of the delta wing at an angle
of sideslip, figure 12 (c), the lift coefficient can be expressed as

C’L=2~a;r cos A\/——G tzn A (106)

K

Slo

|
= 1niy,

R

2 \ \\
, B tan 6, = 0O \\
N
(e)
e -8 -4 o 4 .8

B tan 6

Fioure 19.—Concluded. (¢) 8 tan §=0.9.

where A is the angle of sideslip and 2A the angle between the
leading edges, and @ is expressed in terms of 6, and 6, which
are, in turn, expressed in terms of A and A by the following
equations

6o=24 tan (A+-A) )

6,=p8 tan (A—A) § (107)

Since the pressure distribution has been computed only for
wings with leading edges behind the Mach cone springing
from the apex and with a trailing cdge ahead of the Mach
cones from the wing tips, formula (106) is valid only for
cases where

w+A<90°
A4+-A<p
A—A>0

(108)

These restrictions are practically always met, however, for
angles of sideslip likely to be encountered in flight.
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FIGURE 20.—Variation of reduced lift-curve slope 8 % with angle of sideslip A for some

plan forms of type 3.

Equation (106) is plotted in figure 20 where 8 % is

shown as a function of sideslip and A. The figure shows

that up to 15° of sideslip 8 % remains practically constant.

AMES ABRONAUTICAL LABORATORY,
NatioNaL Apvisory COMMITTEE FOR AERONAVUTICS,
MorrerT Fievp, Cavir., April 14, 1947.
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Positive directions of axes and angles (forces and moments) are shown by arrows _

Aﬁs R Moment about axis Angle Velocities
— Foree
%parallc)el ’ Linear
. - i 0 &X18 ] 3 - - -
Designation ' Sggi" symbol | Designation Sggi\- gggﬁ%ﬁ D%?:)g!;m Sg(z’wil ngnci);n;ll):ng Angular
. axig)
Longitudinal_____... X X Rolling._.__.. L Y—Z | Roll.._...__ S u " p
Lateral ... ... Y Y Pitching.. .| M Z—X Pitch._.._.__ 0 v q
Normal...ceooero . z -Z | Yawing.. ... | N X—Y | Yaw......| ¥ % r
Absolute coefficients of moment : Angle of set of control surface (relative to neutral
L M N ' position), 6. (Indicate surface by proper subseript.)
o=t o= =N |
qbsS ™ geS qb8 ‘
(rollmg) (pitching) (yawing)
4. PROPELLER SYMBOLS .
D Diameter o oy P
Geometric pitch P Power absolute coefficient (/’p—w—q)—5

P
D Pitch ratio , Vv
» Z{,z, Inflow velocity C, Speed-power coeﬁiment—\/ L

V,  Slipstream velocity 7 Efficiency
T Thrust, absolute coefficient 0T=pnTTD4 n Revolutions per second rps
: . ‘ Effective helix angle= tan"‘( )
Q Torque, absolute coefficient Co=-—3 2wrn,
. pnP P
5. NUMERICAL RELATIONS

"1 hp=76.04 kg-m/s=550 ft-Ib/sec ’ 1 1b=0.4536 kg
" 1 metric horsepower=0.9863 hp . 1 kg=2.2046 1b

1 mph=0.4470 mps 1 mi=1,609.35 m=>5,280 it

1 mps=2.2369 mph 1 m=3.2808 ft -



